
International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 4(1), 2018, 1-4

www.ijgser.com 50

Efficient Resource Utilization Using Nearby Mobile

Devices with Task Sharing Algorithm
1
Deepak Oswal,

2
Prof.S.M.Sangve

Department of Computer Engineering, Zeal College of Engineering, Pune, India.

Abstract: - In traditional web-based applications current

technology does not facilitate exploiting this resource rich

space of machine and human resources. As mobile devices

evolve to be powerful and pervasive computing tools, their

usage additionally continues to extend speedily. However,

mobile device users oftentimes expertise issues once running

intensive applications on the device itself, or offloading to

remote clouds, attributable to resource shortage and

property problems. Node heterogeneousness, unknown

employee capability, and dynamism square measure

identified as essential challenges to be self-addressed once

programing work among near mobile devices we have a

tendency to gift a work-sharing model, referred to as well-

known work stealing methodology to load balance freelance

jobs among heterogeneous mobile nodes, ready to

accommodate nodes every which way effort and connection

the system. The general strategy of this project is to

specialize in short-term goals, taking advantage of

opportunities as they arise, based on the ideas of proactive

staff and timeserving delegator. We evaluate our model using

a prototype framework built using Android and implement

two applications.

Keywords: - Wi-Fi, Hotspot, Job Scheduling, Load

Balancing.

I. INTRODUCTION

Today’s environments have become embedded with mobile

devices with increased capabilities, equipped with numerous

sensors, wireless connectivity also as restricted machine

resources. However, on the far side some traditional web-

based applications, current technology don’t facilitate

exploiting this resource wealthy house of machine and

human resources. Collaboration among such sensible mobile

devices will pave the Approach for larger computing

opportunities, not simply by making crowd-sourced

computing opportunities needing a person's component,

however additionally by determination the resource

Limitation drawback inherent to mobile devices.

However such mobile crowds aren't meant to interchange the

remote cloud computing model, however to enhance it as

given below:

-As an alternate resource cloud in environments wherever

connectivity to remote clouds is smallest.

-To decrease the strain on the network.

- To utilize machine resources of idle mobile devices [12].

This paper presents the Honeybee model that supports P2P

work sharing among dynamic mobile nodes. As proof of

concept we present the Honeybee API, a programming

framework for developing mobile crowd computing

applications. We build on previous work where we initially

investigated static job farming among a heterogeneous group

of mobile devices in [7], which was followed by a more self-

adaptive approach in [6] using the ‘work stealing’ method

and in [7] where three different mobile crowdsourcing

applications were implemented and evaluated. The progress

of our research on work sharing for mobile edge-clouds is

illustrated in Table 1.

We present the honeybee model that supports P2P work

sharing among dynamic mobile nodes. As proof of construct

we have a tendency to gift the honeybee API, a programming

framework for developing mobile crowd computing

applications. we have a tendency to rest on previous work

wherever we tend to at the start investigated static job

farming among a heterogeneous cluster of mobile devices in,

that was followed by an additional self-adaptive approach in

using the ‘work stealing’ technique, and in wherever three

completely different mobile crowdsourcing applications were

enforced and evaluated. The progress of our analysis on work

sharing for mobile edge-clouds is illustrated in Table 1.

Phase I Phase II Phase III

Simple work

farming on

Bluetooth

Work stealing

on Bluetooth

Enhanced work

stealing on Wi-Fi

Direct: current paper

connect to

workers via

Bluetooth

connect to

workers via

Bluetooth

connect to workers

via Wi-Fi Direct

distribute jobs

equally

distribute jobs

equally

work stealing

commences without

initial equal job

distribution

No load-

balancing

load-balancing

via work

stealing after

initial job

distribution

fault-tolerance and

methods periodic

resource discovery

TABLE 1: Evolution of the Honeybee model for computing

with nearby mobile devices

We have improved the work stealing algorithmic rule of

phase ii to deal with the bottlenecks within the transmission

of enormous job information by optimizing the task

distribution strategy and using Wi-Fi Direct. Phase III is

additionally ready to handle random disconnections and

opportunistic connections. We show wide amounts of

performance gain and energy savings using our system.

Though we tend to acknowledge that incentives, security and

trust mechanisms are essential for a made mobile crowd, and

honeybee is run on a secure atmosphere.

II. RELATED WORK

Offloading computation and storage from mobile devices to

an external set of resources, has been explored in the

literature [7]. With regards to the resource offloading, current

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 4(1), 2018, 1-4

www.ijgser.com 2

research can be viewed from three main perspectives:

offloading to a remote resource cloud [9], to a local cloudlet

or local infrastructure [12] and to other mobile devices [7].

Each of the three methods have advantages depending mainly

on the existence of high connectivity, additional

infrastructure or node encounters respectively. In our work,

we focus on the third method, ie., opportunistically sharing

work with the surrounding mobile devices, owing to issues

with the other two approaches in cases of low network

availability and lack of established infrastructure.

Furthermore, in Honeybee, we also recognize the potential of

using mobile devices as agents of crowd sourcing, thereby

exploiting the collective power of human expertise and

machine resources.

In much research regarding mobile work sharing, the

existence of a central server has been essential to either co-

ordinate jobs among the mobile devices [10], or to offload

the work on to [2], [3], [9]. However, our system follows a

decentralized job sharing method, with the job scheduling

depending entirely on the availability of the participating

nodes. The concept of mobile devices forming resource

clouds has been discussed by Miluzzo et al. in, which

identifies key areas of ‘MCloud Management’ including

periodic resource discovery, formation, fault tolerance, and

handling mobility. In Honeybee, we also recognize the need

to address the aforementioned areas, plus load balancing, and

provide a complete implementation that supports them. An

emulation testbed to evaluate the time and energy savings of

offloading to a Mobile Device Cloud has been implemented

in [6]. Such a testbed can be useful for mobile application

development using an API such as Honeybee and some of the

results reported from their testbed are comparable with our

figures. However, our experimental data also suggest that

there are additional factors that affect the overall

performance such as accommodating random disconnections,

unknown node capabilities, and unequal job distributions.

Phoenix [11] proposes a distributed storage service using

mobile devices in the vicinity, and shows the possibility to

ensure data longevity despite autonomous node mobility.

Honeybee, on the other hand, focuses on offering

computation services rather than storage. In most mobile task

sharing systems, Wi-Fi or 3G has been the most used

communication protocols, except in the cases such as the

MMPI framework [5], which is a mobile version of the

standard MPI over Bluetooth, and uses Bluetooth exclusively

for transmission, and Cuckoo [9], based on the Ibis

communication middleware [13], to offload to a remote

resource, and supports Bluetooth with Wi-Fi and cellular.

Although Honeybee has used Bluetooth in previous versions,

the current implementation uses Wi-Fi Direct due to better

speeds and range. Femto Cloud [8] proposes an opportunistic

mobile edge-cloud platform that offloads jobs to nearby

mobiles, similarly to Honeybee. However, whereas

Honeybee does not require prior information about the

computational capabilities of the worker nodes to load

balance the task, Femto Cloud’s scheduling strategy depends

on periodic capability estimations of each worker node.

III. MODEL AND ALGORITHMS

We define Mobile Crowd Computing as a bunch of

dynamically connected mobile devices and their users using

their combined machine and human intelligence to execute a

task in a distributed manner. Such a mobile crowd is

comprised of heterogeneous devices and will be unknown to

every alternative a priori. Taking part mobile nodes could

dynamically leave or be a part of the crowd while not prior

notice, and therefore the should be accommodated by

opportunistically seeking out new resources as they're

encountered and having acceptable fault-tolerance

mechanisms to support mobility.

Figure 1: Architecture Diagram

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 4(1), 2018, 1-4

www.ijgser.com 3

Honeybee accommodates the higher than needs by

being proactive and opportunistic, wherever jobs are

‘taken’ by nodes instead of ‘given to’ nodes, because

the accessibility and resourcefulness of every node is

unknown a priority, and subject to change any time.

3.1 Job Scheduling Method

The following characteristics of a mobile edge-cloud

need to be considered when scheduling jobs among

nodes:

1. Heterogeneity: since nodes could also be of

heterogeneous capability and jobs could need varied

amounts of resources, job allocation is non-trivial.

Optimally stronger nodes should do additional work.

An expiration mechanism is required so stronger

nodes will steal terminated jobs taken by weaker

nodes. Otherwise, if jobs were farmed equally, weak

nodes could become bottlenecks.

2. Unknown capability: since the delegator is

unaware of worker capability, it's impractical for the

delegator to assign additional work to stronger nodes.

Exchanging information isn't effective thanks to node

dynamism, e.g., the node capabilities could

modification randomly, thereby creating the

knowledge derived from Meta data invalid.

3. Dynamism: as a result of mobility and factors like

human intervention and low battery, nodes ar at risk

of failure. Thus the likelihood of oftentimes

disconnections and new nodes at random change of

integrity need to be supported, and also the overall

strategy must concentrate on short term goals and

take advantage of opportunities as they arise.

Algorithm 1 : Job Scheduling Using Honey bee

behavior inspired load balancing (HBB_LB)

Algorithm.

Input : divided image chunks.

Output : Processed chunks

Step 1:- Get the available mobile resources from .ie,

M1, M2… Mm

Step 2:- Submit the list of tasks T=T1, T2…Tn by the

user.

Assign those task to available machines.

When one of the machine get complete their

job then fallow following procedure.

Step 3:- The scheduler finds the Expected computing

capacity for tasks using (mbps) is million bits per

second and (n) is the total number of tasks.

 ECC=(mbps/n)

 Step 4:- Compute the average computing capacity

for each task using the equation,

 ACC=(1/m)*ECC

m: Number of Ms

Step 5:- Find the load on a M

LM=(tasklength/servicelenth)

Step 6:- Compute the average system load

ASL=(1/M)*LM

Step 7:- The deviation of Load, DOL is found out as,

DOL=(ASL-LM)

Step 7.1 The probability value is checked for

confinement within the range 0 to 1 as,

If (0< P(DOL)<1)

Underloaded_list[]= M

else

Overloaded_list[]= M

Step 8:- Select Underloaded Ms and compare its

Average computing capacity with expected

computing power of tasks.

Step 8.1 Check if (ACC< =ECC), then

Ms are marked as Fittest and tasks are

allocated to it.

This is for all underloaded list of Ms First.

When underloaded Ms list while(m!=0)the

go for step9.

Step 9:- after task allocation to Ms, some Ms remains

underutilized.

Check if (ACC>ECC), then

VMs are marked as weak and tasks are

allocated to it.

Step 10:- If one of the M complete their job and

return back to server then again go for step no-5

until your all task could not get complete.

IV. CONCLUSION

Firstly, work sharing among associate degree

autonomous native mobile device crowd could be a

viable technique to attain speedups and save energy.

The addition of latest resources up to associate

degree optimum quantity will yield inflated speedups

and power savings. Secondly, generalized

frameworks are often used for abstracting ways and

facultative parameterization for various varieties of

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 4(1), 2018, 1-4

www.ijgser.com 4

tasks product of freelance jobs. Thirdly, inherent

challenges of mobile computing like random

disconnections, having no previous info on taking

part nodes, and frequent fluctuations in resource

convenience are often with success accommodated

via fault tolerance ways and work stealing

mechanisms.

REFERENCES

[1]Niroshinie Fernando, Seng W. Loke, and Wenny

Rahayu Computing with Nearby Mobile Devices: a

Work Sharing Algorithm for Mobile Edge-Clouds

DOI 10.1109/TCC.2016.2560163, IEEE

Transactions on Cloud Computing

[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A.

Patti. Clonecloud: elastic execution between mobile

device and cloud. In Proc. of the 6th conference on

Computer systems, EuroSys, pages 301–314, 2011.

[3] E. Cuervo, A. Balasubramanian, Dae-ki Cho,

A.Wolman, S. Saroiu, R. Chandra, and P. Bahl.

Maui: making smartphones last longer with code

offload. In Proc. of the 8th Intl conference on Mobile

systems, applications, and services, MobiSys, pages

49–62, New York, USA, 2010. ACM.

[4] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A

survey of mobile cloud computing: architecture,

applications, and approaches. Wireless

Communications and Mobile Computing, 2011.

[5] D. C. Doolan, S. Tabirca, and L. T. Yang. Mobile

parallel computing. In Proc. of the 5th Int’l

Symposium on Parallel and Distributed Computing,

pages 161–167, 2006.

[6] A. Fahim, A. Mtibaa, and K. A. Harras. Making

the case for computational offloading in mobile

device clouds. In Proc. of the 19th Int’l Conference

on Mobile Computing & Networking, pages 203–

205, NY, USA, 2013.

[7] N. Fernando, S. W. Loke, and W. Rahayu.

Honeybee: A programming framework for mobile

crowd computing. In Mobile and Ubiquitous

Systems: Computing, Networking, and Services,

volume 120, pages 224–236. Springer Berlin

Heidelberg, 2013.

[8] K. Habak, M. Ammar, K. Harras, and E. Zegura.

Femtoclouds: Leveraging mobile devices to provide

cloud service at the edge. In Proceedings of the 8th

IEEE International Conference on CloudComputing,

2015.

[9] R. Kemp, N. Palmer, T. Kielmann, and H. Bal.

Cuckoo: A computation offloading framework for

smartphones. In Mobile Computing, Applications,

and Services, volume 76, pages 59–79. Springer

Berlin Heidelberg, 2012.

[10] E. E. Marinelli. Hyrax: Cloud Computing on

Mobile Devices using MapReduce. Carnegie Mellon

University, Masters thesis, 2009.

[11] R.K. Panta, R. Jana, F. Cheng, Y.R. Chen, and

V.A. Vaishampayan. Phoenix: Storage using an

autonomous mobile infrastructure. Parallel and

Distributed Systems, IEEE Transactions on,

24(9):1863–1873, 2013.

[12] R. van Nieuwpoort, J. Maassen, G. Wrzesi ´

nska, R. F. H. Hofman, C. J. H. Jacobs, T. Kielmann,

and H. E. Bal. Ibis: A flexible and efficient java-

based grid programming environment: Research

articles. Concurr. Comput. : Pract. Exper., 17(7-

8):1079–1107, June 2005..

http://www.ijgser.com/

