
International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 50-53

www.ijgser.com 50

A Work Sharing Algorithm for Efficient Resource

Utilization Using Nearby Mobile Devices
1
Vinayak Kawade,

2
Pravin Kaldoke,

3
Suraj Kamble,

4
Vishal Surade

Department of Computer Engineering, Sinhgad College of Engineering, Pune, India.

Abstract:- As mobile devices evolve to be powerful and pervasive computing tools, their usage additionally

continues to extend speedily. However, mobile device users oftentimes expertise issues once running intensive

applications on the device itself, or offloading to remote clouds, attributable to resource shortage and property

problems. Node heterogeneousness, unknown employee capability, and dynamism square measure identified as

essential challenges to be self-addressed once programing work among near mobile devices we have a tendency to

gift a work-sharing model, referred to as well-known work stealing methodology to load balance freelance jobs

among heterogeneous mobile nodes, ready to accommodate nodes every which way effort and connection the

system. The general strategy of this project is to specialize in short-term goals, taking advantage of opportunities as

they arise, based on the ideas of proactive staff and timeserving delegator.

Keywords: - Wi-Fi, Hotspot, Job Scheduling, Load Balancing.

I. INTRODUCTION

Today’s environments have become embedded with

mobile devices with increased capabilities, equipped

with numerous sensors, wireless connectivity also as

restricted machine resources. However, on the far

side some traditional web-based applications, current

technology doesn't facilitate exploiting this resource

wealthy house of machine and human resources.

Collaboration among such sensible mobile devices

will pave the Approach for larger computing

opportunities, not simply by by making crowd-

sourced computing opportunities needing a person's

component, however additionally by determination

the resource

limitation drawback inherent to mobile devices.

However such mobile crowds aren't meant to

interchange the remote cloud computing model,

however to enhance it as given below:

-As an alternate resource cloud in environments

wherever connectivity to remote clouds is smallest.

-To decrease the strain on the network.

- To utilize machine resources of idle mobile

devices.

We presents the honeybee model that supports P2P

work sharing among dynamic mobile nodes. As proof

of construct we have a tendency to gift the honeybee

API, a programming framework for developing

mobile crowd computing applications. we have a

tendency to rest on previous work wherever we tend

to at the start investigated static job farming among a

heterogeneous cluster of mobile devices in, that was

followed by an additional self-adaptive approach in

using the ‘work stealing’ technique, and in wherever

three completely different mobile crowdsourcing

applications were enforced and evaluated. The

progress of our analysis on work sharing for mobile

edge-clouds is illustrated in Table 1.

Phase I Phase II Phase III

Simple work Work stealing Enhanced

farming on

Bluetooth

on Bluetooth work stealing

on Wi-Fi

Direct: current

paper

connect to

workers via

Bluetooth

connect to

workers via

Bluetooth

connect to

workers via

Wi-Fi Direct

distribute jobs

equally

distribute jobs

equally

work stealing

commences

without initial

equal job

distribution

No load-

balancing

load-balancing

via work

stealing after

initial job

distribution

fault-tolerance

and methods

periodic

resource

discovery

TABLE 1: Evolution of the Honeybee model for

computing with nearby mobile devices

We have improved the work stealing algorithmic rule

of phase ii to deal with the bottlenecks within the

transmission of enormous job information by

optimizing the task distribution strategy and using

Wi-Fi Direct. Phase III is additionally ready to handle

random disconnections and opportunistic

connections. We show wide amounts of performance

gain and energy savings using our system. Though

we tend to acknowledge that incentives, security and

trust mechanisms are essential for a made mobile

crowd, and honeybee is run on a secure atmosphere.

II. RELATED WORK

Offloading computation and storage from mobile

devices to an external set of resources, has been

explored within the literature. With regards to the

resource offloading, current analysis are often viewed

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 50-53

www.ijgser.com 51

from three main perspectives: offloading to a remote

resource cloud, to a local cloudlet or local

infrastructure and to alternative mobile devices.

Every of the three ways have benefits relying in the

main on the existence of high property, extra

infrastructure or node encounters respectively. In our

work, we tend to specialize in the third technique, ie.,

opportunistically sharing work with the

encompassing mobile devices, because of problems

with the opposite two approaches in cases of low

network accessibility and lack of established

infrastructure. What is more, in honeybee, we have a

tendency to additionally acknowledge the potential of

using mobile devices as agents of crowdsourcing,

thereby exploiting the collective power of human

experience and machine resources.

In a lot of analysis relating to mobile work sharing,

the existence of a central server has been essential to

either co-ordinate jobs among the mobile devices, or

to offload the work on to.

In honeybee, we have a tendency to additionally

acknowledge the requirement to handle the same

areas, and load balancing, and supply a whole

implementation that supports them. an emulation test

bed to judge the time and energy savings of

offloading to a Mobile Device Cloud has been

implemented in. Such a test bed will be helpful for

mobile application development using an API like

honeybee and a few of the results according from

their test bed are comparable our figures.

However, our experimental knowledge additionally

suggest that there are further factors that have an

effect on the general performance like

accommodating random disconnections, unknown

node capabilities, and unequal job distributions.

Although bee has used Bluetooth in previous

versions, this implementation uses Wi-Fi Direct as a

result of higher speeds and range. FemtoCloud

proposes an opportunist mobile edge-cloud platform

that offloads jobs to near mobiles, equally to

honeybee. However, wherever as honeybee doesn't

need previous data regarding the procedure

capabilities of the worker nodes to load balance the

task, FemtoCloud’s programing strategy depends on

periodic capability estimations of every worker node.

III. MODEL AND ALGORITHMS

We define Mobile Crowd Computing as a bunch of

dynamically connected mobile devices and their

users using their combined machine and human

intelligence to execute a task in a distributed manner.

Such a mobile crowd is comprised of heterogeneous

devices and will be unknown to every alternative a

priori. Taking part mobile nodes could dynamically

leave or be a part of the crowd while not prior notice,

and therefore the should be accommodated by

opportunistically seeking out new resources as they're

encountered and having acceptable fault-tolerance

mechanisms to support mobility.

Figure 1: Architecture Diagram

Honeybee accommodates the higher than needs by

being proactive and opportunistic, wherever jobs are

‘taken’ by nodes instead of ‘given to’ nodes, because

the accessibility and resourcefulness of every node is

unknown a priority, and subject to change any time.

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 50-53

www.ijgser.com 52

3.1 Job Scheduling Method

The following characteristics of a mobile edge-cloud

need to be considered when scheduling jobs among

nodes:

1. Heterogeneity: since nodes could also be of

heterogeneous capability and jobs could need varied

amounts of resources, job allocation is non-trivial.

Optimally stronger nodes should do additional work.

An expiration mechanism is required so stronger

nodes will steal terminated jobs taken by weaker

nodes. Otherwise, if jobs were farmed equally, weak

nodes could become bottlenecks.

2. Unknown capability: since the delegator is

unaware of worker capability, it's impractical for the

delegator to assign additional work to stronger nodes.

Exchanging information isn't effective thanks to node

dynamism, e.g., the node capabilities could

modification randomly, thereby creating the

knowledge derived from Meta data invalid.

3. Dynamism: as a result of mobility and factors like

human intervention and low battery, nodes ar at risk

of failure. Thus the likelihood of oftentimes

disconnections and new nodes at random change of

integrity need to be supported, and also the overall

strategy must concentrate on short term goals and

take advantage of opportunities as they arise.

Algorithm 1 : Job Scheduling Using Honey bee

behavior inspired load balancing (HBB_LB)

Algorithm.

Input : divided image chunks.

Output : Processed chunks

Step 1:- Get the available mobile resources from .ie,

M1, M2… Mm

Step 2:- Submit the list of tasks T=T1, T2…Tn by the

user.

Assign those task to available machines.

When one of the machine get complete their

job then fallow following procedure.

Step 3:- The scheduler finds the Expected computing

capacity for tasks using (mbps) is million bits per

second and (n) is the total number of tasks.

 ECC=(mbps/n)

 Step 4:- Compute the average computing capacity

for each task using the equation,

 ACC=(1/m)*ECC

m: Number of Ms

Step 5:- Find the load on a M

LM=(tasklength/servicelenth)

Step 6:- Compute the average system load

ASL=(1/M)*LM

Step 7:- The deviation of Load, DOL is found out as,

DOL=(ASL-LM)

Step 7.1 The probability value is checked for

confinement within the range 0 to 1 as,

If (0< P(DOL)<1)

Underloaded_list[]= M

else

Overloaded_list[]= M

Step 8:- Select Underloaded Ms and compare its

Average computing capacity with expected

computing power of tasks.

Step 8.1 Check if (ACC< =ECC), then

Ms are marked as Fittest and tasks are

allocated to it.

This is for all underloaded list of Ms First.

When underloaded Ms list while(m!=0)the

go for step9.

Step 9:- after task allocation to Ms, some Ms remains

underutilized.

Check if (ACC>ECC), then

VMs are marked as weak and tasks are

allocated to it.

Step 10:- If one of the M complete their job and

return back to server then again go for step no-5

until your all task could not get complete.

IV. CONCLUSION

Firstly, work sharing among an autonomous native

mobile device crowd may be a viable technique to

realize speedups and save energy. a generalized

framework is used for abstracting ways and enabling

parameterization for various sorts of tasks made of

independent jobs. And inherent challenges of mobile

computing like random disconnections, having no

previous info on participating nodes, and frequent

fluctuations in resource handiness is with success

accommodated via fault tolerance ways and work

stealing mechanisms. The honeybee model caters to

tasks which will be decomposed into independent

jobs. several crowd computing tasks for mobile

devices area unit suited to the current model, for e.g.,

http://www.ijgser.com/

International Journal of General Science and Engineering Research (IJGSER), ISSN 2455-510X, Vol 3(1), 2017, 50-53

www.ijgser.com 53

video transcribing, language translation, medical

information analysis, face detection.

REFERENCES

[1] Cisco visual networking index: Global mobile

data traffic forecast update.

http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/ip-ngn-ip-next-generation-

network/white paper c11-520862.html.

[2] DARPA Creates Cloud Using Smartphones.

http://www.informationweek.com/mobile/ darpa-

creates-cloud-using-smartphones/d/d-id/1111323.

[3] The hyrax project. http://hyrax.dcc.fc.up.pt/.

[4] K. Agrawal, C.E. Leiserson, and J. Sukha.

Executing task graphs using work-stealing. In

Parallel Distributed Processing(IPDPS),2010 IEEE

International Symposium on, pages 1–12, April 2010.

http://www.ijgser.com/

